

Introduction

Motivation:

- The Particle Detector at the Relativistic Heavy Ion Collider (RHIC) is being Upgraded
- However, it lacks a Particle Identification (PI) System
- PI has been successfully accomplished through **DIRC** detectors
- Never been tested with high-multiplicity collisions

How does a DIRC Detector work?

- **DIRC = D**etection of Internally Reflected Cherenkov Light
- Consists of Quartz slab and Cameras on Detector Surface

- Charged particles emit radiation (photons)
- Photons travel through Quartz Bar to detector surface

Simulation Details

- 2000 events run
- 6 particles per event
- Possible particles: Kaon, Pion, Muon, Electron, Proton
- 1st 5 particles in momentum range 0 : 3 GeV
- 6th particle always Pion or Electron with momentum ~2GeV

Figure 1. Top left panel: Color guide for particles in the event. Includes incidence angle and coordinates on quartz bar. Top right panel: Photon angle distribution in frame of 6^{th} particle. Photons are colored according to their hypothesized particle. Bottom Left panel: Unaltered θ projection of angle distribution in top right panel. Bottom Middle Panel: θ distribution of photons indexed to the 6th particle. The histogram is rebinned to improve Gaussian statistics. Bottom Right panel: Gaussian fit information for each particle attempt

Modeling a DIRC Detector for High-Multiplicity Collisions Wilka Carvalho, Axel Drees, Alan Dion

Department of Physics and Astronomy, Stony Brook University

Methods

Develop Libraries in C++ to:

- Geometrically model quartz bar
- Simulate particle trajectory to and within quartz bar
- Simulate radiation emission in quartz bar
- Analyze radiation projection on detector surface

What do we know? For each particle:

- 1. Angle of incidence on bar (θ, ϕ)
- 2. Incidence Coordinates (x, y)

Data Analysis

- Over-reconstruct original photon angles
- Study photon distributions in frame of each particle's trajectory
- Correlate photons to particles in order to index photons
- Reconstruct original particle emission angle and radiation intensity

Analysis Details

- Study θ projection of photon angle distribution
- Fit Gaussian to indexed and rebinned θ projection
 - Center corresponds to particle emission angle
 - Area corresponds to particle radiation intensity
 - Compare each quantity to expected values for each particle
- Seek fake-rate < 5%

Unsuccessful Particle Reconstruction

- - fake-rate > 5% at higher momentum

Figure 3: A plot of the percent with which pions are misidentified as electrons (fake-rate) vs. the percent of times with which electrons are correctly identified as electrons (efficiency). This plot focuses on a momentum range of 1.8GeV to 3GeV. One can see that the fake-rate remains low with high efficiency at momentum below 2GeV; however, just above 2GeV, the fake-rate rises above 5% at only 50% efficiency. This rise becomes faster as we look at data points that correspond to higher momentum.

Obstacles:

- Over-reconstruction of photons causes self-interference Causes bias in Gaussian fit

 - Hinders photon disentanglement

We have developed a sophisticated algorithm for PI that has shown to be effective to low-medium multiplicity collisions. The potential for further development of our algorithm indicates that a DIRC may be suitable for the high-multiplicity collisions at RHIC.

• More sophisticated photon reconstruction

- Have knowledge of time associated with each photon

First and foremost, I would like to thank Professor Axel Drees for allowing me to join his computational research group. I thank Research Professor Alan Dion for guiding my development in both data analysis and software engineering. I thank both the SUNY research foundation, LSAMP, and the NSF for funding this research and accompanied costs.

Results

• Successful PI for 1 particle events in 0 : 3 GeV momentum range • Successful PI for 6 particle events in 0 : 2 GeV momentum range

Fake Rate vs. Efficiency

Photons indexed to multiple particles cause significant signal loss

Summary

Future Directions

possible improved discrimination in photon reconstruction improvement in correlating photons to particles Perform separate analyses on photons at each side of the quartz bar

Acknowledgements